首页|基于注意力机制深度学习的轻量级无线网络数据分选方法

基于注意力机制深度学习的轻量级无线网络数据分选方法

扫码查看
轻量级无线网络通常用于资源受限的设备,使得数据传输和处理能力有限,且数据量庞大,特征识别较为困难,导致数据分选精度较低.为此,提出基于注意力机制深度学习的轻量级无线网络数据分选方法.计算数据的特征值,对基础数据量化预处理,采用领域粗糙集算法测算出数据分选的冗余限值,多阶提取数据特征,构建注意力机制深度学习网络数据分选流程,采用最优筛选的方式来实现数据分选处理.最终的测试结果表明:针对选定的6个数据分选测试周期,注意力机制深度学习网络数据分选方法最终得出的数据分选平均F-Score均可以达到85%以上,说明在注意力机制深度学习技术的辅助下,当前所设计的数据分选方法的针对性更强、效率更高,具有实际的应用价值.
Data sorting method of lightweight wireless network based on deep learning of attention mechanism
Lightweight wireless network is usually used for resource-limited equipment,which makes the data transmission and processing capacity is limited,and the amount of data is huge,and the feature identification is difficult,resulting in low data sorting accuracy.Therefore,a lightweight wireless network data sorting method based on deep learning of attention mechanism is proposed.Calculate the characteristic value of the data,quantitatively preprocess the basic data,use the rough set algorithm of the field to calculate the redundant limit of data sorting,the data features are extracted in multiple stages,construct the data sorting pro-cess of attention mechanism deep learning network,and adopt the optimal screening method to realize the data sorting processing.The final test results show that for selected six data sorting test cycle,attention mechanism deep learning network data sorting method final data sorting average F-Score can reach more than 85%,in the attention mechanism of deep learning technology,the current design data sorting method more pertinence,higher efficiency,has the practical application value.

attention mechanismdeep learninglightweight wireless networkdata sortingsorting method

何靓华、赵英

展开 >

南昌应用技术师范学院电子与信息工程学院,南昌 330000

注意力机制 深度学习 轻量级无线网络 数据分选 分选方法

南昌应用技术师范学院校级项目

NYSJG2209

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(7)
  • 10