首页|基于改进YOLOv5的车辆检测方法研究

基于改进YOLOv5的车辆检测方法研究

扫码查看
基于YOLOv5s对交通道路上前方车辆的检测进行了研究,为提高车辆检测精度,对原YOLOv5s网络模型进行了改进.首先,将Mish激活函数应用于YOLOv5s模型之中代替原有的ReLU函数,使用更平滑的Mish激活函数有效避免梯度消失的问题.其次,采用BiFPN作为特征金字塔,增加了特征传递的信息通道,提升模型的感知能力和上下文信息的关联能力.最后,引入EIoU作为损失函数的一部分,准确地表示预测框和真实框之间的位置关系,间接地使收敛速度提升.在D2-City数据集上的实验表明,改进后的YOLOv5s平均精度mAP0.5为84.2%,比原始YOLOv5s算法提升了2个百分点.
Research on vehicle detection method based on improved YOLOv5
Based on YOLOv5s,the detection of vehicles ahead on traffic roads is investigated,and the original YOLOv5s net-work model is improved in order to improve the vehicle detection accuracy.First,the Mish activation function is applied to the YO-LOv5s model instead of the original ReLU function,and the smoother Mish activation function is used to effectively avoid the prob-lem of gradient disappearance.Secondly,BiFPN is used as the feature pyramid,which increases the information channel for feature transfer and improves the model's perceptual ability and the ability to correlate contextual information.Finally,EIoU is introduced as part of the loss function to accurately represent the positional relationship between the predicted and real frames,which indi-rectly makes the convergence speed increase.Experiments on the D2-City dataset show that the improved YOLOv5s has an average accuracy mAP@0.5 of 84.2%,which is a 2 percentage point improvement over the original YOLOv5s algorithm.

YOLOv5svehicle inspectionMishBiFPNEIoU

赵月爱、王哲

展开 >

太原师范学院计算机科学与技术学院,晋中 030619

YOLOv5s 车辆检测 Mish BiFPN EIoU

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(8)
  • 19