首页|基于Transformer的PM2.5浓度预测方法

基于Transformer的PM2.5浓度预测方法

扫码查看
在深度学习领域中,通常采用循环神经网络(RNN)等方法对PM2.5的浓度进行预测研究,但传统方法在捕捉多站点数据之间的时空相关性方面存在一定困难.为了解决这一问题,基于Transformer网络模型对PM2.5浓度数据预测进行研究.Transformer采用多头自注意力机制,能够更好地捕捉PM2.5浓度的时空依赖性.其通过模型中编码器提取特征信息,通过模型中解码器处理特征中的依赖关系,输出未来时刻的PM2.5浓度,在真实数据集上的实验表明,Trans-former网络模型具备更好的预测能力.
A Transformer-based model for PM2.5 concentration prediction
In the field of deep learning,the recurrent neural networks(RNNs)are often used to predict the concentration of PM2.5.However,traditional methods encounter challenges in capturing the spatiotemporal correlations among multi-site data.To ad-dress this issue,research is conducted on predicting PM2.5 concentration using a Transformer-based network model.The Trans-former employs a multi-head self-attention mechanism that better captures the spatiotemporal dependencies of PM2.5 concentration indices across various locations.The model's encoder extracts feature information,while the decoder handles dependencies in the input features to output future PM2.5 concentrations.Experimental results on real datasets demonstrate that the Transformer network model possesses enhanced predictive capabilities.

PM2.5Transformerspatiotemporal correlationdeep learning

叶耀、严华

展开 >

四川大学电子信息学院,成都 610065

PM2.5 Transformer 时空相关性 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(8)
  • 16