首页|基于注意力机制和残差网络的手部热痕迹识别

基于注意力机制和残差网络的手部热痕迹识别

扫码查看
手部热痕迹红外图像识别对刑事侦查具有重要意义,但热痕迹图像往往存在模糊问题.传统识别方法依靠人工设计特征,存在局限性,常规的深度学习方法对样本数量存在依赖性,均难以直接应用.利用卷积神经网络强大的特征表达能力,引入残差网络增强模型学习特征的性能,设计注意力机制模块从空间和通道维度提高模型对重要特征的关注度,最终构建了基于注意力机制的残差卷积神经网络.实验验证了该算法的有效性,取得了最高的识别准确率.
Hand heat trace recognition based on attention mechanism and residual networks
Infrared image recognition of hand thermal trace is of great significance to criminal investigation,but thermal trace images often have fuzzy problems.Traditional recognition methods rely on artificial design features,and conventional deep learning methods depend on the number of samples,so it is difficult to apply them directly.Using the strong feature expression ability of con-volutional neural network,the residual network is introduced to enhance the performance of learning features of the model,and the attention mechanism module is designed to improve the attention of the model to important features from the spatial and channel di-mensions.Finally,the residual convolutional neural network based on attention mechanism is constructed.Experimental results verify the effectiveness of the algorithm and achieve the highest recognition accuracy.

infrared picturehand thermal tracesdeep learningcomputer visionimage recognition

于晓、许靖寓

展开 >

天津理工大学电气工程与自动化学院,天津 300384

红外图像 手部热痕迹 深度学习 计算机视觉 图像识别

国家自然科学基金天津市自然科学基金

6150234018JCQNJC01000

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(9)