首页|基于深度学习的废旧电路板表面缺陷分类

基于深度学习的废旧电路板表面缺陷分类

扫码查看
针对废旧电路板表面缺陷识别,提出了一种利用深度学习进行分类的方法.在ResNet34模型的基础上,增加了CBAM注意力机制.通过将ResNet34架构与注意力机制相结合,旨在增强模型关注输入图像中重要特征并对其进行优先排序的能力,从而提高分类的准确性.结果表明提出的方法在提高废旧电路板表面缺陷分类方面的有效性.
Deep learning-based surface defect classification of scrap circuit boards
A classification method using deep learning is proposed for the recognition of surface defects on scrap circuit boards.Based on the ResNet34 model,the CBAM attention mechanism is added.By combining the ResNet34 architecture with the attention mechanism,it aims to enhance the model's ability to focus on important features in the input image and prioritize them,thus improving the classification accuracy.The results demonstrate the effectiveness of the proposed method in improving the clas-sification of surface defects on scrap circuit boards.

waste printed circuit boardsattention mechanismsurface defect classification

余光海、盛光鸣、张元昊、徐观明

展开 >

合肥工业大学机械工程学院,合肥 230009

湖南绿色再生资源有限公司,长沙 410699

废旧电路板 注意力机制 表面缺陷分类

国家重点研发计划重点专项项目

2019YFC1908002

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(10)