首页|基于AOD-Net的雾天高速公路能见度动态检测方法

基于AOD-Net的雾天高速公路能见度动态检测方法

扫码查看
单纯以图像帧差特征为主的公路能见度动态检测方法,缺乏足够多样且具有代表性的真实数据集,使得能见度的智能检测精度下降,为此,利用生成对抗网络的博弈迭代计算优势,设计一种基于AOD-Net(An All-in-One Network)的雾天高速公路能见度动态检测.首先,采用生成对抗网络中的带雾图像生成算法,主要是判断生成的带雾图像的真实程度,旨在使判别器准确地区分真实图像和生成的图像.然后,捕获不同尺度下的特征,从而更准确地估计雾霾参数,利用AOD-Net完成雾霾动态识别与能见度检测.最后,构建团雾分级预警模型,以实现团雾智能预警.通过对比实验证明,所提检测方法可以实现对雾天高速公路能见度动态高精度检测,检测结果与实际能见度偏差不超过5m,具备较高的应用价值.
Dynamic visibility detection method for foggy highways based on AOD Net
The dynamic detection method of visibility of highway,which is mainly based on image frame difference characteris-tics,lacks enough diverse and representative real data sets,which makes the intelligent detection accuracy of visibility decrease.Therefore,therefore,using the advantage of game iterative calculation of generated against network,design a dynamic detection of fog-day visibility of highway based on AOD-Net(An All-in-One Network).Firstly,the foggy image generation algorithm in the ad-versarial generation network is adopted to judge the true degree of the generated foggy image,aiming to make the discriminator ac-curately distinguish the real image from the generated image.Then,the characteristics at different scales were captured to estimate the haze parameters more accurately,and the haze dynamic identification and visibility detection were completed using AOD-Net.Finally,the hierarchical early warning model of fog is constructed to realize the intelligent early warning of fog.Through compara-tive experiments,it is proved that the proposed detection method can realize the dynamic and high-precision detection of the visibil-ity of the foggy expressway,and the deviation between the detection results and the actual visibility is not more than 5m,which has high application value.

AOD-Nethighwaydynamic detectionvisibilityfoggy days

时兵、唐昌华、杨阳、于超

展开 >

长春工业大学人文信息学院,长春 130122

中国联合网络通信有限公司长春市分公司,长春 130000

AOD-Net 高速公路 动态检测 能见度 雾天

吉林省教育厅科学技术研究项目吉林省教育厅科学技术研究项目

JJKH20231440KJJJKH20231441KJ

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(11)