首页|基于TomBERT的local-global社交平台多模态情感分类

基于TomBERT的local-global社交平台多模态情感分类

扫码查看
随着自媒体时代的兴起,社交媒体上用户表达的情感和态度成为反映社会公众情感的重要信息源.然而,现有多模态情感分类方法在处理文字和图片融合时往往忽略了目标外的场景因素,影响了情感分类的准确性.针对此问题,提出基于TomBERT的local-global社交平台多模态情感分类模型,该模型以TomBERT模型为基础架构,将输入信息分为主体(local)和场景(global)两部分,分别进行图文匹配,通过多模态编码器获得最终的多模态隐藏表示后进行分类,充分考虑了主体信息与场景信息的关联,使用场景因素对主体进行特征增强,辅助情感分类.实验证明,基于TomBERT的local-global社交平台多模态情感分类模型较于传统方法,在捕捉模态间关系的同时,更全面地考虑了主体与场景的影响,提高了情感分类的准确性.
TomBERT-based local-global multimodal sentiment classification for social platforms
With the rise of the self-media era,the emotions and attitudes expressed by users on social media have become im-portant sources of information reflecting the public's emotions.However,existing multimodal sentiment classification methods al-ways overlook scene factors outside the target when dealing with text and image fusions,which affects the accuracy of sentiment classification.Aiming at this problem,a local-global multimodal sentiment classification model for social platform based on TomBERT is proposed.This model uses the TomBERT model as the basic architecture,divides the input information into two parts:the main body(local)and the scene(global)for image and text matching,and obtains the final multimodal hidden representation through a multimodal encoder for classification,fully considering the correlation between subject information and scene informa-tion,using scene factors to enhance subject features and assist in sentiment classification.Experimental results have shown that local-global multimodal sentiment classification model for social platform based on TomBERT,compared to traditional methods,not only captures the relationships between modalities but also comprehensively considers the influence of subjects and scenes,im-proving the accuracy of sentiment classification.

sentiment classificationmultimodaltarget informationscene informationBERT

戴可玉、严华

展开 >

四川大学电子信息学院,成都 610065

情感分类 多模态 主体信息 场景信息 BERT

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(11)