首页|改进YOLOv8的果园葡萄检测算法

改进YOLOv8的果园葡萄检测算法

扫码查看
针对现有的果园葡萄检测算法在针对枝干遮挡、果实遮挡时检测精度不高的问题,提出一种改进YOLOv8n的果园葡萄检测算法.首先,向主干网络末端和颈部网络引入CA注意力机制,以提高模型对关键特征的关注度;然后使用MPDIoU替换原模型中的CIoU损失函数,加快模型收敛速度并提高边界框回归精度.实验结果表明,改进后的模型在P、R和mAP上均有提升,能够满足复杂果园环境下对葡萄检测的需求.
Improved orchard grape detection algorithm of YOLOv8
Due to the low detection accuracy of existing orchard grape detection algorithms in the case of stem occlusion and fruit occlusion,an improved YOLOv8n orchard grape detection algorithm was proposed.Firstly,CA attention mechanism is intro-duced to the end of backbone network and neck network to improve the model's attention to key features.Then MPDIoU was used to replace the CIoU loss function in the original model to accelerate the convergence speed and improve the precision of bounding box regression.The experimental results show that the improved model has improved in P,R and mAP,and can meet the needs of grape detection in complex orchard environment.

grape detectionYOLOv8nattention mechanismloss fuctionMPDIoU

王成健、徐振平、文汉云

展开 >

长江大学计算机科学学院,荆州 434000

葡萄检测 YOLOv8n 注意力机制 损失函数 MPDIoU

国家自然科学基金资助项目

41372155

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(12)