首页|基于深度学习的玉米叶片病害识别方法研究

基于深度学习的玉米叶片病害识别方法研究

扫码查看
玉米叶片病害的及时识别和防治对保障玉米产量和质量具有重要意义.提出一种基于深度学习的玉米叶片病害识别方法,并开发了相应的移动应用.使用YOLOv5s、YOLOv5m、YOLOv5l、ResNet18、ResNet34、ResNet50、EfficientNet_b0、EfficientNet_b1、EfficientNet_b2共9个深度学习模型,对包含普通锈病、枯萎病、灰色叶斑和健康叶片四类的玉米叶片病害图像进行训练和识别,比较不同模型在识别准确率、识别速度和模型大小方面的性能,结果表明EfficientNet_b0模型具有最高的平衡准确率(96.3%)和较低的模型复杂度.基于EfficientNet_b0模型开发了安卓平台的移动应用,该应用能够实现对玉米叶片病害的实时识别或加载相册图片识别,并给出相应的类别名称和置信度、病害介绍以及建议防治措施,为玉米种植者提供了一种便捷、高效和智能的玉米叶片病害诊断工具,有助于提高玉米生产的效率和质量.
Research on corn leaf disease recognition method based on deep learning
Timely identification and control of maize leaf diseases is of great significance to ensure maize yield and quality.A method of maize leaf disease recognition based on deep learning was proposed and the corresponding mobile application was de-veloped.Nine deep learning models were used:YOLOv5s,YOLOv5m,YOLOv5l,ResNet18,ResNet34,ResNet50,Efficient-Net_b0,EfficientNet_b1,and EfficientNet_b2.The results showed that the EfficientNet_b0 model had the highest balance accu-racy(96.3%)and low model complexity,and the performance of recognition accuracy,recognition speed and model size were com-pared among the four types of maize leaf disease images,including common rust,blight,gray leaf spot and healthy leaf.The mobile application on Android platform was developed based on the EfficientNet_b0 model,which could realize real-time identification of maize leaf diseases or recognition of loaded photo albums,and provide corresponding category names and confidence levels,dis-ease introduction and suggested prevention and control measures,providing a convenient,efficient and intelligent maize leaf dis-ease diagnosis tool for maize growers.It is helpful to improve the efficiency and quality of corn production.

corn leaf diseasesdeep learningimage recognitionmobile spplicationAndroid

章赵威、冯向萍、张世豪

展开 >

新疆农业大学计算机与信息工程学院,乌鲁木齐 830052

玉米叶片病害 深度学习 图像识别 移动应用 安卓

国家级大学生创新训练项目科技部科技创新2030-重大项目新疆维吾尔自治区重大科技专项

2022107580242022ZD01158052022A02011

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(13)