首页|一种无人机编队参考点飞行运动预判方法

一种无人机编队参考点飞行运动预判方法

扫码查看
为了实现无人机编队领机/虚拟参考点飞行运动的准确预判,提出了一种基于RBF神经网络的领机/虚拟参考点加速度估计方法.设计神经网络实际权值的更新方式,并运用改进的智能水滴算法获取神经网络高斯径向基函数中心(c1 max,c2 max).其中,上述算法中水滴的速度和加速度模拟无人机的速度和加速度;根据水滴位置偏差、速度偏差组成的矩阵的范数以及网格土壤含量,更新水滴所处网格位置;在满足计算停止条件时,土壤含量最少网格处的(c1 max,c2 max)作为基函数中心输出.仿真表明,无人机编队能够快速响应机动飞行,队形变换结束后各机位置偏差和速度偏差足够小.可见,对领机/虚拟参考点加速度估计足够准确,估计方法有效.
A method for predicting the flight movement of the reference points in the drone formation
In order to achieve accurate prediction of the flight movement of the lead aircraft/virtual reference point in the drone formation,a method for estimating the acceleration of the lead aircraft/virtual reference point based on RBF neural network is proposed.The updating method of the actual weights of the neural network is designed,and the improved intelligent waterdrop algo-rithm is used to obtain the Gaussian radial basis function centers(c1 max,c2 max)of the neural network.In the above algorithm,the ve-locity and acceleration of waterdrops simulate the velocity and acceleration of drones.According to the norms of matrices composed of position deviations and velocity deviations of waterdrops,as well as soil content of grid,the grid position of waterdrops is up-dated.When the computational stop condition is met,(c1 max,c2 max)at the grid with the least soil content is output as the center of basis function.Simulations show that the drone formation can quickly respond to maneuvering flight,and the position and velocity deviations of each aircraft after formation transformation are small enough.It can be seen that the acceleration estimation of the lead aircraft/virtual reference point is accurate enough,and the estimation method is effective.

UAV formationlead aircraft/virtual reference pointaccelerationneural networkwaterdrop algorithm

商园春、赵长春、李云庆

展开 >

上海电子信息职业技术学院中德工程学院,上海 201411

上海航天控制技术研究所,上海 201109

无人机编队 领机/虚拟参考点 加速度 神经网络 水滴算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(13)