首页|轻量化SSD的人脸检测

轻量化SSD的人脸检测

扫码查看
针对当前目标检测算法难以在资源有限的硬件平台上运行的问题,以Single Shot MultiBox Detector(SSD)为基础,在SSD中引入GhostNet网络来替换原本的VGG16主干网络,再引入轻量化注意力机制来补偿轻量化模型带来的检测精度损失,提高网络检测能力.在同一数据集上进行检测,改进后的GC-SSD模型大小由原SSD模型的92.11 M减小到10.90 M,mAP相比于Ghost-SSD模型提高了15.43%.实验结果表明,改进后的GC-SSD模型mAP达到92.06%,模型大小大量减小,更适用于移动端设备.
Face detection with lightweight SSD
Aiming at the problem that the current target detection algorithm is difficult to run on the hardware platform with limited resources,based on the Single Shot MultiBox Detector(SSD),The GhostNet network is introduced into SSD to replace the original VGG16 backbone network,and the lightweight attention mechanism is introduced to compensate for the loss of detection accuracy brought by the lightweight model and improve the network detection capability.When tested on the same dataset,the size of the improved GC-SSD model is reduced from 92.11 M of the original SSD model to 10.90 M,and the mAP of the GC-SSD model is increased by 15.43%compared with the Ghost-SSD model.The test results show that the mAP of the improved GC-SSD model reached 92.06%,the model size is greatly reduced,and it is more suitable for mobile devices.

target detectionSSDattention mechanismlightweight

戈若男、李飞

展开 >

沈阳工业大学信息科学与工程学院,沈阳 110870

目标检测 SSD 注意力机制 轻量化

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(13)