首页|深度学习驱动的图像分割:U-Net、SegNet和DenseASPP的比较研究

深度学习驱动的图像分割:U-Net、SegNet和DenseASPP的比较研究

扫码查看
旨在深入比较深度学习驱动的图像分割方法,特别关注U-Net、SegNet和DenseASPP这三种经典架构的性能差异.通过在裂缝集、火焰集和Cityscapes数据集上进行广泛的实验,比较各模型的精度、效率和鲁棒性,以全面评估它们在图像分割任务中的表现.结果表明,SegNet在裂缝集上略逊于U-Net,DenseASPP在所有数据集上均表现出色,具有更高的精度和鲁棒性.这一研究突出了模型架构对于图像分割性能的关键作用,使DenseASPP成为在需要高精度和鲁棒性的图像分割任务中的有前景选择.这项研究为深度学习图像分割任务提供了有益的指导,有助于研究人员更明智地选择适用于其具体任务的模型架构,为图像分割领域的未来研究提供了有价值的见解.
Deep learning-driven image segmentation:a comparative study of U-Net,SegNet and DenseASPP
The study aimed to thoroughly compare deep learning-driven image segmentation methods,particularly focusing on the performance differences among three classic architectures:U-Net,SegNet,and DenseASPP.The authors conducted extensive experiments on the crack dataset,fire dataset,and Cityscapes dataset,comparing the models in terms of accuracy,efficiency,and robustness,providing a comprehensive assessment of their performance in image segmentation tasks.The results indicated that Seg-Net slightly lagged behind U-Net on the crack dataset,but DenseASPP consistently outperformed on all datasets,demonstrating higher accuracy and robustness.This study highlights the crucial role of model architecture in image segmentation performance,making DenseASPP a promising choice for tasks requiring high precision and robustness.The research offers valuable guidance for deep learning image segmentation tasks,helping researchers make informed decisions regarding the selection of model architec-tures tailored to their specific tasks and providing valuable insights for the future of the field of image segmentation.

image segmentationdeep learningsemantic segmentation

崔丽娜

展开 >

长治幼儿师范高等专科学校信息技术教学部,长治 046000

图像分割 深度学习 语义分割

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(13)