首页|个人信贷违约预测机器学习模型的解释性方法研究

个人信贷违约预测机器学习模型的解释性方法研究

扫码查看
近年来个人信贷业务需求量激增,金融机构利用机器学习模型对客户进行信贷违约预测,预测结果的可解释性影响着金融机构的决策.首先基于机器学习模型LightGBM、XGBoost、CatBoost构建个人信贷违约预测模型,然后通过超参数优化和Voting投票融合方法提升了模型的性能,最后采用置换特征重要性、LIME、SHAP和反事实解释四种解释方法,从全局和局部层面对模型预测结果进行解释性分析,提高了模型的可信度和实用性.
Research on interpretative methods of machine learning models for personal credit default prediction
In recent years,as the demand for personal credit business has surged,financial institutions predict credit default with machine learning models.The interpretability of the prediction results is so important that influences the decision-making of financial institutions.Firstly,a personal credit default prediction model is constructed based on machine learning models Light-GBM,XGBoost and CatBoost.Then,the model is experimentally optimized by using hyperparameter optimization algorithms and Voting fusion methods.Finally,the model prediction results are interpretively analyzed globally and locally through four interpreta-tive methods,including Permutation Feature Importance,LIME,SHAP and Counterfactual Interpretation,which greatly enhance the reliability and practicability of the model.

financial creditmachine learninginterpretability

陈玉沂、刘高勇、蔡焕仪

展开 >

广东工业大学管理学院,广州 510520

金融信贷 机器学习 可解释性

广东省大学生创新创业计划项目

S202311845168

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(13)