首页|基于改进CAE的嵌入式深度聚类算法

基于改进CAE的嵌入式深度聚类算法

扫码查看
针对目前的深度卷积嵌入式聚类DCEC算法的网络结构存在的特征损失问题,提出了一种基于深度卷积降噪自编码器的新网络结构.在新网络结构中,通过优化DCEC中的卷积核步长参数,并加入池化层来加强特征提取的同时减少网络参数和防止过拟合现象,在解码器中添加了上采样层来恢复在编码器中池化操作造成的特征损失,并为了更有效地加强特征提取,在编码过程后添加全连接层过渡.由此得到一种基于改进CAE的DCEC_ICAE算法,并在三个经典图像数据集上测试,同时使用经典聚类评价指标进行评估.实验结果表明,提出的DCEC_ICAE算法的聚类性能要优于对比算法,证明了新网络结构的有效性和合理性.
Embedded deep clustering algorithm based on improved CAE
In order to address the issue of feature loss in the network structure of the current deep convolutional embedded clustering(DCEC)algorithm,a novel network structure based on deep convolutional noise reduction autoencoder is proposed.In the new network structure,optimizing the convolutional kernel step size parameter in DCEC and adding pooling layers to enhance feature extraction while reducing network parameters and preventing overfitting phenomenon.Additionally,an upsampling layer is added to the decoder to recover the feature loss caused by pooling operation in the encoder.To further improve feature extraction effectiveness,a fully connected layer transition is introduced after the coding process.Consequently,we propose DCEC_ICAE algo-rithm which is evaluated using three classical image datasets and two classical clustering evaluation indicators.Experimental results demonstrate that our proposed DCEC_ICAE algorithm outperforms comparison algorithms in terms of clustering perfor-mance,thus validating and justifying the efficacy of our new network structure.

deep clusteringconvolutional denoising autoencoderdeep embedded clusteringneural network architecture

李天雨、赵超超、何鑫、张蔚旖

展开 >

西南科技大学数理学院,绵阳 621010

深度聚类 卷积降噪自编码器 深度嵌入式聚类 神经网络架构

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(15)