首页|基于自适应秃鹰搜索算法的无人机三维路径规划

基于自适应秃鹰搜索算法的无人机三维路径规划

扫码查看
针对秃鹰搜索算法(BES)在寻优时易陷入局部最优、搜索效率低,且全局搜索精度不高等不足,提出一种自适应秃鹰搜索算法(ABES)并应用于无人机的三维路径规划问题.在算法的选择阶段,将控制螺旋轨迹的参数由定值修改为自适应调整,从而提高算法的全局探索能力和收敛速度,改善算法性能.通过创建仿真三维地理环境来模拟真实场景下的无人机飞行状况,利用ABES算法解决路径规划问题.通过对比实验,有效测试了ABES算法在通过各种地形地貌下的优异能力.实验结果证明ABES算法的性能相对BES有所提升,能够快速、稳定、有效地解决三维路径规划问题.
3D path planning for unmanned aerial vehicles based on adaptive bald eagle search algorithm
An adaptive bald eagle search algorithm(ABES)is proposed and applied to the three-dimensional path planning problem of unmanned aerial vehicles(UAVs)to address the shortcomings of the bald eagle search algorithm(BES),which is prone to falling into local optima,low search efficiency,and low global search accuracy during optimization.In the selection stage of the algo-rithm,the parameters controlling the spiral trajectory are modified from fixed values to adaptive adjustments,thereby improving the algorithm's global exploration ability and convergence speed,and improving its performance.By creating a simulated three-dimensional geographic environment to simulate the flight conditions of unmanned aerial vehicles in real scenes,the ABES algorithm is used to solve path planning problems.Through comparative experiments,the excellent ability of the ABES algorithm in navigating various terrains and landforms was effectively tested.The experimental results demonstrate that the performance of the ABES algorithm has been improved,and it can quickly,stably,and effectively solve three-dimensional path planning problems.

bald eagle search algorithmadaptiveunmanned aerial vehicles3D path planningmetaheuristic algorithm

张云辉、肖文红

展开 >

嘉兴职业技术学院互联网学院,嘉兴 314036

秃鹰搜索算法 自适应 无人机 三维路径规划 元启发式算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(15)