首页|基于深度学习的列车设备螺栓脱落故障检测研究

基于深度学习的列车设备螺栓脱落故障检测研究

扫码查看
随着深度学习技术的快速发展,利用深度学习技术对列车故障进行检测已成为智能运维领域的重要研究方向.文章介绍一种基于深度学习模型的列车设备螺栓脱落故障检测方法,它可让自动巡检装置对采集到的列车设备螺栓照片进行判别,输出异常检测结果.文章从训练数据处理、故障检测模型搭建、模型训练、模型应用等方面进行说明.
Research on bolt detachment fault detection of train equipment based on deep learning
With the rapid development of deep learning technology,using deep learning technology to detect train faults has become an important research direction in the field of intelligent operation and maintenance.The article presents a method for de-tecting train equipment bolt detachment faults using a deep learning model.The method enables automatic inspection devices to discriminate and output abnormal detection results from collected photos of train equipment bolts.The article explains from the as-pects of training data processing,fault detection model construction,model training,and model application.

artificial intelligencedeep learningfault detectionbolt detachment detection

彭辉、张群慧

展开 >

湖南科技职业学院人工智能学院,长沙 410004

人工智能 深度学习 故障检测 螺栓脱落检测

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(15)