首页|基于人工智能模型的场景变换检测方法

基于人工智能模型的场景变换检测方法

扫码查看
人工智能模型在计算机领域有着广泛的应用,基于人工智能模型Tansformer的场景变化检测算法,应用了PCA降维技术,采用三维卷积和二维卷积来提取深层局部特征,并结合CBAM模块和Tansformer编码器模块进一步利用高光谱场景空间和通道两个维度上的关联性.结果表明,本算法所提出的变化检测算法检测精度较高,时效性较强,能够在精度和复杂度两个方面取得较好的平衡.
Scene transformation detection method based on artificial intelligence model
This article proposes a Tansformer based change detection algorithm for hyperspectral remote sensing images.The algorithm applies PCA dimensionality reduction technology,uses 3D convolution and 2D convolution to extract deep local features,and combines the CBAM module and Tansformer encoder module to further utilize the correlation between the spatial and channel dimensions of hyperspectral images.The results show that the change detection algorithm proposed by this algorithm has high detection accuracy,strong timeliness,and can achieve a good balance between accuracy and complexity.

CBAM attention moduleTansformer modulehyperspectral imageremotesensing imager change detectiondeep learning

王碧璇、王毅阳、何毅

展开 >

大连理工大学城市学院计算机学院,大连 116600

东北师范大学信息科学与技术学院,长春 130117

CBAM注意力模块 Tansformer模块 高光谱场景 变化检测 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(15)