首页|基于注意力机制的短期光伏功率预测

基于注意力机制的短期光伏功率预测

扫码查看
针对传统的光伏功率预测难度大、精度低等问题,提出一种基于注意力机制的短期光伏功率预测模型,将光伏电站的历史记录数据进行处理后导入到预测模型进行训练,利用CNN局部特征提取功能能力以及BiLSTM处理序列信号的能力,再结合Attention机制对不同特征进行权重系数分配.选取澳大利亚某光伏电站数据进行模拟仿真,将Attention-CNN-BiLSTM模型与LSTM等模型进行对比,验证了该模型有更好的预测精度.
Short-term PV power prediction based on attention mechanism
Proposing a short-term PV power prediction model based on an attention mechanism addresses the challenges of tra-ditional PV power prediction,such as difficulty and low accuracy.The model utilizes historical data from photovoltaic power sta-tions for training,leveraging the local feature extraction capability of CNN and the sequential signal processing ability of BiLSTM.Additionally,the Attention mechanism allocates weight coefficients to different features.Simulating with data from a specific Aus-tralian photovoltaic power station,the Attention-CNN-BiLSTM model is compared with LSTM and other models,validating its supe-rior predictive accuracy.

short-term PV power forecastattention mechanismconvolutional neural network

林瑞航、朱宗玖

展开 >

安徽理工大学电气与信息工程学院,淮南 232001

短期光伏功率预测 注意力机制 卷积神经网络

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(15)