首页|基于深度神经网络的脑控技术研究

基于深度神经网络的脑控技术研究

扫码查看
提出一种通过对脑机接口数据进行时域、频域划分的运动想象信号识别和分类系统.实验采集了4名被试者的前进、停止、左转、右转运动想象的脑电信号数据作为实验数据集,提出了两种深度学习模型,门控循环单元神经网络(GRU)和一种混合深度学习框架1DCNN-GRU模型来进行信号识别准确性对比.并对未处理的脑电信号进行快速傅里叶变换提取数据重要特征值,对实验数据集进行6∶2∶2训练-验证-测试分割.
Research on brain control technology based on deep neural network
The subject proposes a system for recognizing and classifying motor imagery signals by dividing the brain-computer interface data into time and frequency domains.The EEG signal data of forward,stop,left-turn,and right-turn motor imagery of four subjects were collected as the experimental dataset,and two deep learning models were proposed to compare the signal recognition accuracy,the two deep learning models are:gated recurrent unit neural network(GRU)and a hybrid deep learning framework 1DCNN-GRU model.The unprocessed EEG signals were also subjected to Fast Fourier Transform to extract the important feature values of the data,and the experimental dataset was subjected to 6:2:2 train-validate-test segmentation.

brain-computer interfacemotor imagerygated recurrent unithybrid deep learning framework

杨昊智、钟明月、李健

展开 >

广西科技大学机械与汽车工程学院,柳州 545000

脑机接口 运动想象 门控循环单元 混合深度学习框架

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(16)