首页|基于Haar-like特征的人脸检测算法研究与应用

基于Haar-like特征的人脸检测算法研究与应用

扫码查看
随着社会信息化和智能化的不断发展,人脸检测技术逐渐成为目标检测领域的热点话题.研究方法包括文献研究法和理论分析法,该研究采用基于Haar-like特征的AdaBoost人脸检测算法,结合OpenCV计算机视觉开源库,旨在实现对目标图像中可能存在的人脸区域进行高效检测.Haar-like特征利用图像中的黑白相间区域来描述目标形状特征,结合AdaBoost算法能够提高人脸检测的准确性和鲁棒性.OpenCV开源库的使用使得算法实现更加便捷高效.经过实验证明,基于Haar-like特征的AdaBoost人脸检测算法不仅能够提高对人脸图像的检测率,还能够显著缩短人脸检测的时间,具有很高的实用价值.因此,基于Haar-like特征的AdaBoost人脸检测算法的研究和应用具有重要意义,对推动人脸识别技术的发展具有积极的推动作用.
Research and application of Haar-like feature-based face detection algorithm
With the continuous development of social informatization and intelligentization,face detection technology has gradually become a hot topic in the field of target detection.Research methods include literature research and theoretical analysis.The Haar-like feature-based AdaBoost face detection algorithm used in this paper,combined with the OpenCV computer vision open-source library,aims to efficiently detect potential face areas in target images.Haar-like features describe target shape charac-teristics using black-and-white areas in the image,and when combined with the AdaBoost algorithm,they can improve the accuracy and robustness of face detection.The use of the OpenCV open-source library makes the algorithm more convenient and efficient to implement.Experimental results have shown that the AdaBoost face detection algorithm based on Haar-like features can not only improve the detection rate of face images,but also significantly shorten the face detection time,which has high practical value.Therefore,the research and application of the Haar-like feature-based AdaBoost face detection algorithm are of great significance in promoting the development of face recognition technology.

face detectionHaar-like featuresAdaBoost algorithmOpenCV computer vision open-source library

林齐发、吴晨曦、邹鑫

展开 >

桂林理工大学计算机科学与工程学院,桂林 541006

桂林理工大学物理与电子信息工程学院,桂林 541006

人脸检测 Haar-like特征 AdaBoost算法 OpenCV计算机视觉开源库

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(17)