首页|点云补全技术的研究与应用

点云补全技术的研究与应用

扫码查看
点云数据蕴含着大量的空间信息,通过LiDAR、3D传感器等设备获取点云数据,被广泛应用在自动驾驶、3D重建、医学图像处理等计算机视觉领域.但由于传感器视野受限、物体遮挡等因素,导致获取的点云数据存在缺失部分.点云补全旨在从不完整的点云数据中推断出缺失的部分并还原完整的点云数据.基于此,对基于深度学习的点云补全方法进行分类,并分析模型的优缺点,描述几个点云补全领域常用的公共数据集和评价标准,对未来点云补全技术的研究方向进行探讨.
Research and application of point cloud completion technology
Point cloud data contains a large amount of spatial information,which is acquired by LiDAR,3D sensors and other devices,and is widely used in computer vision fields such as autonomous driving,3D reconstruction,and medical image process-ing.However,due to factors such as limited sensor field of view and object occlusion,there are missing parts in the acquired point cloud data.Point cloud completion aims to infer the missing parts from incomplete point cloud data and restore the complete point cloud data.Based on this,we classify deep learning-based point cloud completion methods,analyze the advantages and disadvan-tages of the models,describe several commonly used public datasets and evaluation criteria in the field of point cloud completion,and discuss the future research direction of point cloud completion technology.

point cloudpoint cloud completioncomputer visiondeep learning

赵立培、童文喜

展开 >

华北水利水电大学信息工程学院,郑州 450045

点云 点云补全 计算机视觉 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(17)