首页|基于YOLOv5的常见蔬菜图像检测方法

基于YOLOv5的常见蔬菜图像检测方法

扫码查看
蔬菜的准确分类与检测对蔬菜的生产加工效率具有重要意义.为了提升蔬菜在生产加工过程中的效率,提出了基于YOLOv5的常见蔬菜图像检测方法.首先,通过LabelImg工具对常见的6类蔬菜图像进行位置信息和类别的标注,为YOLOv5的训练提供数据集.其次,搭建基于YOLOv5的目标检测网络对蔬菜图片进行特征提取,获取蔬菜图像检测网络.最后,在蔬菜测试集上对本文方法的性能进行验证.实验结果表明,本文方法可以有效实现常见蔬菜的图像检测任务.
A common vegetable image detection method based on YOLOv5
The accurate classification and detection of vegetables are of great significance to their production and processing efficiency.In order to improve the efficiency of vegetable production and processing,a common vegetable image detection method based on YOLOv5 is proposed.First,,LabelImg tool was used to annotate the position information and category of 6 common veg-etable images,so as to provide data set for YOLOv5 training,providing data set for YOLOv5 training.Secondly,a target detection network based on YOLOv5 is built to extract features from vegetable images and obtain the vegetable image detection network.Fi-nally,the performance of the proposed method is verified on a vegetable test set.The experimental results show that the proposed method can effectively realize the image detection of common vegetables.

vegetableimage detectionobject detectionYOLOv5

蔡东吟、曹玉华

展开 >

广东白云学院智能制造工程学院,广州 510450

蔬菜 图像检测 目标检测 YOLOv5

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(18)