首页|基于主成分分析的PSO-BP算法对肥胖水平预测研究

基于主成分分析的PSO-BP算法对肥胖水平预测研究

扫码查看
提出一种主成分分析法(PCA)与粒子群优化BP神经网络算法(PSO-BP)相结合的肥胖水平预测模型.通过主成分分析法对16个输入变量进行降维,提取出11个综合变量作为BP神经网络的输入,利用PSO算法优化BP神经网络的权值与阈值,进一步提升网络训练的能力.实验结果表明,基于主成分分析的PSO-BP算法不仅简化了模型结构,而且在更短的时间内实现了对肥胖水平更高的分类预测精度.这一研究为个体肥胖水平的评估提供科学的依据,具有重要的研究意义与应用价值.
Research on obesity level prediction by the PSO-BP algorithm based on principal component analysis
An obesity level prediction model combining principal component analysis(PCA)and particle swarm optimization BP neural network algorithm(PSO-BP)is proposed.Dimension reduction of the 16 input variables are performed by principal com-ponent analysis,and 11 comprehensive variables which represented principal components are extracted as the input of BP neural network,optimize the weights and thresholds of network by using the PSO algorithm,further improve the ability of network training.Experimental results show that the PSO-BP algorithm based on PCA achieves higher classification prediction power at a shorter time cost.This study provides a scientific basis for the evaluation of individual obesity level,and has important research signifi-cance and application value.

obesity levelprincipal component analysisPSO-BP algorithmclassification prediction

邱麒添

展开 >

广东技术师范大学数学与系统科学学院,广州 510665

肥胖水平 主成分分析法 PSO-BP算法 分类预测

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)