首页|YOLOv5轻量化结合OTA行人检测方法的改进

YOLOv5轻量化结合OTA行人检测方法的改进

扫码查看
基于YOLOv5的行人检测方法已经在实际应用中取得了很好的效果,但仍存在一些缺点,例如在复杂场景下的检测不够精准,对于目标检测的处理速度不够理想等.为了解决以上存在的问题,提出了以下改进方法:将C3模块替换为RepGhost模块,降低模型的计算复杂度并提升检测速度.此外,结合最佳传输分配方法进一步优化行人检测精度,该方法通过最小化成本函数来优化检测框的分配.经过上述改进,模型的参数量减少了35%,计算量GFLOPs降低了20%,在RTX3090上的处理速度提升了7%,同时模型大小减少了33%.精度方面mAP50提升了2.7%,mAP50-95也有1%的提升.
Improvement of YOLOv5 lightweight combined with OTA pedestrian detection methods
The pedestrian detection method based on YOLOv5 has achieved good results in practical applications,but there are still some shortcomings,such as the detection in complex scenes is not accurate enough,and the processing speed for target de-tection is not ideal.In order to solve the above problems,the following improvement method is proposed:replace the C3 module with the RepGhost module to reduce the computational complexity of the model and improve the detection speed.In addition,the pedes-trian detection accuracy is further optimized by combining with the Optimal Transport Assignment(OTA)method,which optimizes the allocation of detection frames by minimizing the cost function.As a result of these improvements,the amount of parameters in the model is reduced by 35%,the amount of computational GFLOPs is reduced by 20%,and the processing speed is increased by 7%on the RTX3090,while the model size is reduced by 33%.Accuracy is improved by 2.7%on mAP50 and 1%on mAP50-95.

deep learningYOLOv5target detectionmodel improvementlightweighting

周远航、李飞

展开 >

沈阳工业大学信息科学与工程学院,沈阳 110023

深度学习 YOLOv5 目标检测 模型改进 轻量化

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)