首页|基于深度自编码网络的低照度图像边缘细节增强方法

基于深度自编码网络的低照度图像边缘细节增强方法

扫码查看
传统的增强方法通常依赖于手动设计的特征提取器或简单的滤波手段,但在处理低照度图像时效果有限,无法充分保留图像细节特征,导致图像质量下降,表现为边缘模糊、毛糙、缺乏清晰度等问题.为解决这一问题,提出了基于深度自编码网络的低照度图像边缘细节增强方法.该方法通过设定邻域边缘矩阵来定位细节损失区域,提取并平滑处理这些区域的边界,实现低照度图像边缘的重构.利用深度自编码网络逐层抽象地提取关键边缘细节特征,并采用变量密度增强的方式对这些特征进行进一步处理,优化增强低照度图像的边缘细节.实验证明,该方法能够获得较高的边缘像素,并提高图像分辨率,具有实际应用的潜力和价值.
Edge detail enhancement method of low-illumination image based on deep self-encoding network
Traditional enhancement methods often rely on manually designed feature extractors or simple filtering techniques,but their effectiveness is limited when processing low light images,and they cannot fully preserve image details,resulting in a de-crease in image quality,manifested as blurred edges,roughness,and lack of clarity.To address this issue,this study proposes a low illumination image edge detail enhancement method based on deep autoencoder networks.This method locates detail loss areas by setting neighborhood edge matrices,extracts and smooths the boundaries of these areas,and achieves the reconstruction of low illu-mination image edges.Using deep autoencoder networks to extract key edge detail features layer by layer abstractly,and further pro-cessing these features using variable density enhancement to optimize and enhance the edge details of low illumination images.Ex-perimental results have shown that this method can obtain higher edge pixels and improve image resolution,with practical applica-tion potential and value.

deep self coding networklow light imagesedge detailsenhancement methods

陈镜伊、谢瑞

展开 >

92941部队45分队,葫芦岛 125000

92493部队46分队,葫芦岛 125000

深度自编码网络 低照度图像 边缘细节 增强方法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)