首页|基于深度学习的场景文字识别方法

基于深度学习的场景文字识别方法

扫码查看
在文字识别领域,传统的文字识别OCR技术已经得到广泛应用.但自然场景中文字具有背景形状不一、字体扭曲、背景复杂等特点,给文字识别带来更大挑战.生活中充斥着大量的自然场景文字,应用前景也非常广阔.通过使用Mask TextSpotter模型作为场景文字识别的主要框架,经过对某些关键参数的调优,使它在端到端和对于不同规则的文字识别上有着显著的效果.项目实施过程中,经历了四个阶段的工作,第一阶段准备数据并对PyTorch环境进行搭建;第二阶段设计实现了基于Mask TextSpotter的场景文字识别算法;第三阶段设计实现文字识别系统;第四阶段测试系统、评估模型.
Scene text recognition method based on deep learning
In the field of text recognition,traditional OCR technology has been widely used.However,Chi-nese characters in natural scenes have the characteristics of different background shapes,distorted fonts,and complex backgrounds,which bring greater challenges to text recognition.Life is full of a large number of natural scene texts,and the application prospects are also very broad.By using the Mask TextSpotter model as the main framework for scene text recognition,and after tuning some key parameters,it has a significant effect on end-to-end and text recognition for different rules.During the implementation of the project,four phases of work were carried out,the first stage is to prepare the data and build the PyTorch environment,the second stage is to design and implement the scene text recognition algorithm based on Mask TextSpotter,the third stage is to design and implement the text recognition system,and the fourth stage is to test the system and evaluate the model.

Mask TextSpotter modeltext recognitionPyTorch environment

王元兴、张玉成、徐浩哲

展开 >

西京学院计算机学院,西安 710123

Mask TextSpotter模型 文字识别 PyTorch环境

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)