首页|基于集成LightGBM的交通事故持续时间预测

基于集成LightGBM的交通事故持续时间预测

扫码查看
针对城市道路交通事故持续时间影响因素众多、难以预测的问题,提出了结合bagging和LightGBM的集成预测模型,并使用网格搜索寻找模型最优的超参数.结果表明,与单一LightGBM模型和支持向量机、神经网络和梯度提升机相比,提出的模型具有更高的精度和泛化能力.特征重要性表明事故发生位置、时段和天气有关的特征对持续时间的预测影响较大.
Prediction of traffic accident duration based on integrated LightGBM
Aiming at the problem that the duration of urban road traffic accidents is difficult to predict due to many factors af-fecting it,an integrated prediction model combining bagging and LightGBM is proposed,and a grid search is used to find the opti-mal hyperparameters of the model.The results show that the proposed model has higher accuracy and generalization ability com-pared with a single LightGBM model and support vector machines,neural networks and gradient boosters.Feature importance indi-cates that accident location,time of day and weather related features have a greater impact on the prediction of duration.

traffic accident durationLightGBMintegrated prediction model

周克、闫苗苗

展开 >

湖州师范学院经济与管理学院,湖州 313000

湖州师范学院理学院,湖州 313000

交通事故持续时间 LightGBM 集成预测模型

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)