首页|基于数据挖掘的高校食堂学生就餐行为分析方法

基于数据挖掘的高校食堂学生就餐行为分析方法

扫码查看
为深入了解学生的就餐需求,提升食堂的运营效率和服务质量,通过大数据特征挖掘分析技术,设计了高校食堂学生就餐行为分析方法.首先,通过Jinshuju.net平台收集学生就餐数据,利用大数据分析和数据挖掘技术,深入了解了高校学生的就餐行为、偏好和需求,并利用iiMedia工具判断就餐频率与就餐行为关系.经分析发现:学生的食堂就餐行为与餐费、食堂距离、等餐时间、寻坐时间、菜品品质、菜品品种等均存在相关性,但不同因素的相关程度不同.根据分析结果,可以制定有效的就餐优化方案,提升学生就餐水准.
An analyzing method for dining behavior of college students in canteen based on data mining
In order to gain a deeper understanding of students'dining needs,improve the operational efficiency and service quality of canteens,this study designed a method for analyzing student dining behavior in university canteens through big data fea-ture mining analysis technology.Firstly,this study collected student dining data through the Jinshuju.net platform,utilized big data analysis and data mining techniques to gain a deeper understanding of the dining behavior,preferences,and needs of college stu-dents,and used iiMedia tools to determine the relationship between dining frequency and dining behavior.After analysis,it was found that there is a correlation between student dining behavior in the cafeteria and meal costs,cafeteria distance,waiting time,sit-ting time,dish quality,dish variety,etc.,but the degree of correlation varies among different factors.Based on the analysis results,effective dining optimization plans can be developed to improve the dining standards of students.

big data feature miningcollege cafeteriadining behaviorsatisfaction

杨倩倩、王龙、杨璐

展开 >

晋中信息学院大数据学院,晋中 030800

晋中信息学院信息工程学院,晋中 030800

大数据特征挖掘 高校食堂 就餐行为 满意度

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(19)