首页|基于改进YOLOv8的飞鸟检测算法

基于改进YOLOv8的飞鸟检测算法

扫码查看
旨在提升飞鸟检测任务的准确性,针对传统算法在复杂背景和多变姿态飞鸟检测中的不足,提出基于深度学习的改进YOLOv8算法.该算法通过融合GOLD-YOLO中的GD机制和ASF-YOLO中的尺度序列特征融合(SSFF)模块,优化网络结构,改进特征提取和融合方式,增强多尺度特征融合能力,提升小尺寸目标的特征表示.此外,还收集了一个涵盖不同鸟类近照、飞翔鸟类和鸟群图片的飞鸟数据集,用于算法的训练和测试.实验结果表明,改进后的YOLOv8算法在飞鸟检测任务中性能得以提升,尤其在处理小目标和复杂背景时表现更佳.
Flying bird detection algorithm based on an improved YOLOv8
In this paper,we aim to improve the accuracy of the flying bird detection task,and propose an improved YOLOv8 algorithm based on deep learning to address the shortcomings of traditional algorithms in the detection of flying birds with complex backgrounds and multi-variable attitudes.By fusing the GD mechanism in GOLD-YOLO and the Scale Sequence Feature Fusion(SSFF)module in ASF-YOLO,the network structure is optimized,the feature extraction and fusion methods are improved,the multi-scale feature fusion capability is enhanced,and the feature representation of small-size targets is improved.In addition,a fly-ing bird dataset containing close-up photos of different birds,flying birds and flock images is collected to support the training and testing of the algorithm.The experimental results show that the improved YOLOv8 algorithm improves the performance in the flying bird detection task,especially when dealing with small targets and complex backgrounds.

target detectionYOLOfeature extraction

陈倩、卢扬、邵飞翔、李师艳

展开 >

扬州市职业大学信息工程学院,扬州 225009

目标检测 YOLO 特征提取

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(20)