首页|基于Faster R-CNN的低照度人脸检测方法研究

基于Faster R-CNN的低照度人脸检测方法研究

扫码查看
随着深度学习的发展,人脸检测算法在理想的环境下检测的精准率和检测速度已经达到了相当优秀的水平.但现实应用场景中很难达到理想中的检测环境,低光照、图片模糊产生干扰,导致人脸检测的精准度下降.为了解决这一问题,提出了一种结合MSRCR算法的改良Faster-RCNN的人脸检测方法.首先针对低照度和图片模糊问题提出了使用MSRCR算法对图片进行自动白平衡(AWB).最后使用Soft NMS对Faster-RCNN的候选框算选进行优化,解决人脸重叠检测目标丢失的问题.实验结果表明,低光照或像模糊的情况下结合MSRCR算法的改良Faster R-CNN对比传统的人脸检测有着更高的检测精准度.
Research on low-light face detection method based on Faster R-CNN
With the development of deep learning,face detection algorithms have reached an excellent level of accuracy and speed in ideal environments.However,in real-world scenarios,it is difficult to achieve the ideal detection environment,and factors such as low lighting and blurred images can cause interference,leading to a decrease in the accuracy of face detection.To address this issue,a face detection method based on an improved Faster-RCNN combined with the MSRCR algorithm is proposed.Firstly,the MSRCR algorithm is used to perform automatic white balance(AWB)on the images to address the issues of low lighting and blurring.Finally,Soft NMS is employed to optimize the candidate box selection in Faster-RCNN,solving the problem of missing overlapping detection targets.Experimental results show that the improved Faster R-CNN combined with the MSRCR algorithm has higher detection accuracy compared to traditional face detection methods in low-light or blurred conditions.

face detectiondeep learningimage enhancementlow illumination

岑锐强、冯广

展开 >

广东工业大学计算机学院,广州 510006

广东工业大学自动化学院,广州 510006

人脸检测 深度学习 图像增强 低照度

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(20)