首页|基于深度学习的蚕病检测算法设计

基于深度学习的蚕病检测算法设计

扫码查看
YOLOv8应用于蚕病识别任务时,蚕病症的形态和外观会因为处于不同的阶段发生变化,导致模型容易受到背景信息的干扰,为了增强模型捕获不同阶段蚕病的特征的能力,提出了一种名为DCNv2-Block的新特征提取模块.实验结果表明,相比YOLOv8原模型,提出的改进方法的mAP0.5达到96.5%,提高了1.1个百分点,能更有效捕捉蚕病的病症,提高了蚕病害识别的准确性,有助于及时发现病害并采取控制措施.
Design of silkworm disease detection algorithm based on deep learning
In the context of silkworm disease recognition,the YOLOv8 model is susceptible to interference from background information due to changes in the morphology and appearance of silkworm disease at different stages.To address this issue,a new feature extraction module called DCNv2-Block was proposed to enhance the model's ability to capture characteristics of silkworm disease at different stages.Experimental results demonstrated that compared with the original YOLOv8 model,the proposed im-proved method achieved the mAP0.5 of 96.5%,representing 1.1 percentage point increase.This enhancement enables better cap-ture of symptoms of silkworm diseases,improves accuracy in identifying silkworm diseases,and facilitates timely detection and control measures.

YOLOv8detection of silkworm diseasevariable convolutiondeep learning

曾沛杰、周卫、陈金良

展开 >

广西民族大学人工智能学院,南宁 530006

YOLOv8 蚕病检测 可变性卷积 深度学习

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(20)