首页|SOIQA:一种图像超分领域的实用型图像质量评价方法

SOIQA:一种图像超分领域的实用型图像质量评价方法

扫码查看
主观图像质量评价需要大量人员参与,其结果MOS可信性高,但需花费较多人力物力,客观图像质量评价一般采用数学建模的方式,计算过程简便,但往往和主观评价的一致性不高.SOIQA是一种图像超分领域的实用型图像质量评价方法,基于已有方法,结合深度学习,以UNet为基础模型,预测可靠的评价结果,用于指导超分算法的迭代.实验证明,SOIQA在数据集上的准确率比一般客观评价方式高出12%,和主观评价MOS有较高的一致性.
Stack objective image quality assessment:A practical evaluation method in super resolution task
Subjective assessments provide reliable evaluations that are established through significant amounts of manpower and material resources.Objective assessments based on mathematical models can be easily implemented,but they fail to capture the nuances of human judgement and therefore lack consistency with subjective assessments.Stack Objective Image Quality As-sessment(SOIQA)is a practical objective assessment,which combines existing classic image quality assessments based on deep learning to predict image quality close to subjective evaluation.SOIQA is applied to the task of image super-resolution(SR)and utilized PSNR,SSIM,VMAF,and NIQE assessments in SOIQA,as they are commonly used in SR tasks.To stack these assess-ments effectively,a model is designed encouraged by UNet model.Experimental results show that SOIQA can achieve better image quality evaluation performance with accuracy of 12%higher than the existing objective assessments in MOS consistency.

image quality assessmentdeep learningUnet

法静怡、严广宇

展开 >

沐曦集成电路(上海)有限公司,上海 200131

图像质量评价 深度学习 Unet

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(20)