首页|通过集成域对抗训练和最大平均差异的故障诊断

通过集成域对抗训练和最大平均差异的故障诊断

扫码查看
目前,工业物联网已成功地应用于智能制造业.物联网中的大量数据促进了基于深度学习的工业设备健康监测的发展.由于在不同工作条件或设备上收集的机械故障诊断监测数据存在域不匹配,用训练数据训练的模型在实际应用中可能无法发挥作用.因此,研究具有域自适应能力的故障诊断方法至关重要.提出了一种基于改进的域自适应方法的智能故障诊断方法.具体来说,分别使用最大平均差异和域对抗训练关于特征空间距离和域不匹配的两个特征提取器来增强特征表示.由于单独的分类器训练特征提取器,进一步利用集成学习获得最终结果.实验结果表明,该方法在解决域不匹配故障诊断中是有效的,且具有实际应用价值.
Fault diagnosis through integrated domain adversarial training and maximum average difference
Currently,the industrial Internet of Things has been successfully applied in the intelligent manufacturing industry.The large amount of data in the Internet of Things has promoted the development of industrial equipment health monitoring based on deep learning.Due to domain mismatch in the mechanical fault diagnosis monitoring data collected under different working con-ditions or equipment,models trained with training data may not be effective in practical applications.Therefore,it is crucial to study fault diagnosis methods with domain adaptive capabilities.An intelligent fault diagnosis method based on an improved do-main adaptive method was proposed in this paper.Specifically,two feature extractors for feature space distance and domain mis-match are trained using maximum average difference and domain adversarial training to enhance feature representation.Due to the separate classifier training feature extractor,further ensemble learning is utilized to obtain the final result.The experimental results show that this method is effective and has practical value in domain mismatch fault diagnosis.

domain adaptationdomain adversarial training(DAT)ensemble learningfault diagnosismaximum mean differ-ence(MMD)

张宇、张公政

展开 >

河钢数字技术股份有限公司,石家庄 050035

河钢数字技术股份有限公司深圳分公司,深圳 518000

雄安威赛博智能科技有限公司,雄安 070001

域自适应 域对抗性训练(DAT) 集成学习 故障诊断 最大均值差异(MMD)

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(20)