首页|基于CBW-YOLOv5s轻量化模型的学生课堂行为快速检测

基于CBW-YOLOv5s轻量化模型的学生课堂行为快速检测

扫码查看
针对目前学生课堂行为检测算法准确性和模型复杂度的挑战,提出一种基于CBW-YOLOv5s(CA-BiFPN-WIoU)的轻量化学生课堂行为识别算法.从整体上采用了GhostNet轻量化结构,旨在保证检测性能的同时,精简网络结构,从而大幅降低模型复杂度;BiFPN取代原模型的PANet,以增强模型对课堂行为特征的提取和融合能力;在一些C3模块中引入CA注意力机制,使网络能够更好地关注特征层的空间和通道信息;采用Wise-IoU损失函数以提升模型性能.实验结果表明,这些方法有效简化了模型复杂度,并保持了较高的检测精度.
Fast detection of student classroom behavior based on CBW-YOLOv5s lightweight model
To address the issues of low accuracy and high model complexity in existing student behavior detection algorithms,a lightweight student behavior recognition algorithm based on CBW-YOLOv5s(CA-BiFPN-WIoU)is proposed.The whole algo-rithm adopts the lightweight structure of GhostNet to ensure detection performance while simplifying the network structure,thus sig-nificantly reducing the model complexity.The PANet is replaced by BiFPN to enhance the model's ability to extract and fuse features of student behavior.CA attention mechanism is integrated into some C3 modules to enable the network to pay attention to the spatial and channel information of feature layers.The Wise-IoU loss function is used to improve the model's performance.The experimental results show that the proposed method effectively simplifies the model complexity and maintains a high detection accuracy.

students'classroom behaviorYOLOv5sdeep learningtarget detectionlight weight

张杰、魏艳龙、薛红新

展开 >

太原师范学院计算机科学与技术学院,晋中 030619

中北大学计算机科学与技术学院,太原 030051

学生课堂行为 YOLOv5s 深度学习 目标检测 轻量化

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)