首页|基于YOLOv8的宁夏地区玉米害虫检测系统研究

基于YOLOv8的宁夏地区玉米害虫检测系统研究

扫码查看
基于流行的深度学习算法——YOLOv8框架,训练出一个智能识别玉米害虫的目标检测模型.采用PyQt5开发设计出一款可视化UI界面,实现图片检测、视频检测以及摄像头实时跟踪识别,系统可准确检测宁夏地区常见的13种玉米害虫类别,测试结果可以保存起来方便后续数据分析.基于YOLOv8的玉米害虫检测系统简单易用、界面友好、实时性好、准确率高,为宁夏玉米种植害虫识别提供了解决方案,满足农民现实需求,具备可推广价值.
Research on a corn pest detection system in the Ningxia region based on YOLOv8
This system is based on the popular deep learning algorithm—the YOLOv8 framework,and has trained an intelli-gent target detection model for identifying corn pests.A visual UI interface was developed using PyQt5,enabling image detection,video detection,and real-time camera tracking and recognition.The system can accurately detect 13 common types of corn pests in the Ningxia region,and the test results can be saved for subsequent data analysis.The corn pest detection system based on YOLOv8 is simple to use,with a user-friendly interface,good real-time performance,and high accuracy.It provides a solution for the identification of pests in corn cultivation in Ningxia,meets the real needs of farmers,and has potential for widespread application.

cornpestYOLOv8target detectionUIimagevideocamera

邹鑫

展开 >

宁夏师范大学物理与电子信息工程学院,固原 756000

宁夏师范大学固体微结构与功能实验室,固原 756000

玉米 害虫 YOLOv8 目标检测 UI 图片 视频 摄像头

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)