首页|一种基于BiLSTM-ConvGRU模型的地震预测方法

一种基于BiLSTM-ConvGRU模型的地震预测方法

扫码查看
地震预测在地球科学中是一项极具挑战性的任务,但由于地震数据呈现出非线性及复杂的时空特征,传统的预测方法难以有效处理.提出了一种结合双向长短期记忆网络(BiLSTM)与卷积门控循环单元(ConvGRU)的方法,应用于加州中部和北部的地震数据分析.该方法通过捕捉数据中的时空相关性,提升了模型的建模能力.实验结果显示,BiLSTM-ConvGRU模型在MSE和PSNR等评价指标上均显示出显著的优势,具有广阔的应用前景.
A seismic prediction method based on the BiLSTM-ConvGRU model
Earthquake prediction is a highly challenging task in Earth science,but due to the nonlinear and complex spatio-temporal characteristics of earthquake data,traditional prediction methods are difficult to effectively handle.A method combining bidirectional long short-term memory network(BiLSTM)and convolutional gated recurrent unit(ConvGRU)has been proposed for seismic data analysis in central and northern California.This method enhances the modeling capability of the model by capturing spatiotemporal correlations in the data.The experimental results show that the BiLSTM ConvGRU model exhibits significant advan-tages in evaluation metrics such as MSE and PSNR,and has broad application prospects.

seismic predictionBiLSTMConvGRUcentral and northern California

王思远、陈雨

展开 >

四川大学电子信息学院,成都 610065

地震预测 BiLSTM ConvGRU 加州中部和北部

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)