首页|基于ISSA-ELM的温室温度预测研究

基于ISSA-ELM的温室温度预测研究

扫码查看
针对温室温度预测精度不足的问题,提出一种改进麻雀搜索算法(ISSA)优化极限学习机(ELM)的组合预测模型.考虑SSA算法存在局部最优问题,引入PWLCM混沌初始化麻雀种群,以提高种群的多样性;同时利用自适应t分布变异增强算法的探索和开发能力.将极限学习机网络作为麻雀搜索算法的一个寻优函数,通过其迭代优化极限学习机的输入层与隐含层连接权值和隐含层阈值,将得到的最优值重构ELM模型,进而建立ISSA-ELM模型,用于温室温度的预测.仿真结果表明,构建的ISSA-ELM模型相较于ELM、PSO-ELM和GWO-ELM等模型对温室温度的预测具有更高的精度和更好的效果.
Research on greenhouse temperature prediction based on ISSA-ELM
Aiming at the problem of insufficient greenhouse temperature prediction accuracy,a combined prediction model of improved sparrow search algorithm(ISSA)optimized extreme learning machine(ELM)was proposed.Considering the local optimal problem of the SSA algorithm,PWLCM chaos is introduced to initialize the sparrow population to improve the diversity of the popu-lation;at the same time,the adaptive t distribution mutation is used to enhance the exploration and development capabilities of the algorithm.The extreme learning machine network is used as an optimization function of the Sparrow search algorithm,and the input layer and hidden layer connection weights and hidden layer thresholds of the extreme learning machine are iteratively optimized,and the optimal values obtained are reconstructed and the ELM model is established.ISSA-ELM model for greenhouse temperature prediction.The simulation results show that the constructed ISSA-ELM model has better accuracy and effect in predicting green-house temperature than ELM,PSO-ELM and GWO-ELM models.

greenhouse temperaturePWLCMsparrow search algorithmextreme learning machine

王坤、肖劲松、叶韩、农高海

展开 >

百色学院信息工程学院,百色 533000

温室温度 PWLCM混沌 麻雀搜索算法 极限学习机

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)