首页|融合图像处理技术的红树林鸟类鸣声识别算法

融合图像处理技术的红树林鸟类鸣声识别算法

扫码查看
鸟类的物种监测一直是生物多样性研究的重要内容.然而,目前的鸟类鸣声识别算法大多未考虑环境干扰和算法速度.提出一种基于深度学习、融合图像处理技术对鸟类鸣声音频进行识别的算法.算法对鸟鸣声进行降噪后采用音频与图像处理技术相结合的方法提取鸟类鸣声特征;利用卷积神经网络ResNet进行建模,并将最优模型转换为TensorRT模型,提升推理速度.经实验测试,该算法对鸟类鸣声的分类识别具有良好效果,识别速度也有明显的提高.
A mangrove birdsong recognition algorithm integrating image processing technology
Birds species monitoring is an important part of biodiversity research.However,most of the current birdsong recog-nition algorithms do not consider environmental disturbances and algorithm speed.The paper proposes an algorithm for audio recog-nition of birdsong based on deep learning and fused image processing technology.After denoising the birdsong,the algorithm com-bines audio and image processing technology to extract birdsong features;and with the convolutional neural network ResNet,it mod-els and selects the optimal model,and then converts it into TensorRT model to improve the inference speed.In the experimental tests,the algorithm has shown good performance in classifying and recognizing birdsongs.The optimized model also exhibits a no-ticeable improvement in recognition speed.

birdsong recognitionMel spectrumconvolutional neural networkTensorRT

陈炀、周雁、王庆娟、张馨元、谌业恒

展开 >

北京理工大学(珠海),珠海 519088

北京理工大学徐特立学院,北京 102401

鸟类鸣声识别 Mel谱图 卷积神经网络 TensorRT

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)