首页|基于改进YOLOv7的遥感图像飞机目标检测

基于改进YOLOv7的遥感图像飞机目标检测

扫码查看
针对遥感图像背景复杂所带来的检测精度低、小目标特征丢失的问题,提出一种改进YOLOv7的遥感图像飞机目标检测算法.该算法采用迁移学习的策略,微调预训练模型,提升了模型的泛化能力;通过在模型的检测头引入融合注意力机制模块(CBAM),获取上下文语义信息,以增强对遮挡物和小目标的特征提取能力.采用RSOD数据集来验证改进算法的效果,结果表明:改进后YOLOv7算法mAP达到了97.13%,相比原始YOLOv7提高了3.08个百分点,有效提高了遥感图像飞机的检测精度.
Aircraft target detection in remote sensing images based on improved YOLOv7
Aiming at the problems of low detection accuracy and loss of small target features caused by the complex back-ground of remote sensing images,an aircraft target detection algorithm for remote sensing images with improved YOLOv7 is pro-posed.The algorithm adopts the strategy of migration learning to fine-tune the pre-trained model,which improves the generalization ability of the model;and acquires the contextual semantic information by introducing the Convolutional Block Attention Module(CBAM)in the detection head of the model,in order to enhance the feature extraction ability of the occluders and small targets.The RSOD dataset is used to verify the effect of the improved algorithm,and the results show that the mAP of the improved YOLOv7 algorithm reaches 97.13%,which is 3.08 percentage piont higher than that of the original YOLOv7,and effectively improves the detection accuracy of the aircraft in remote sensing images.

remote sensing imagerytarget detectionYOLOv7transfer learningCBAM

林瑞鸿、刘超、谭浩

展开 >

安徽理工大学空间信息与测绘工程学院,淮南 232001

遥感图像 目标检测 YOLOv7 迁移学习 CBAM

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)