首页|基于YOLO、SSD与Faster R-CNN的视频监控目标检测算法优化研究

基于YOLO、SSD与Faster R-CNN的视频监控目标检测算法优化研究

扫码查看
随着视频监控系统的复杂性增加,海量、实时且准确的视频监控目标检测变得至关重要.现有的视频目标检测算法如YOLO、SSD和Faster R-CNN各有优劣,且对于海量视频进行目标检测,单一算法均难以满足不同的视频检测需求.鉴于此针对视频目标检测,提出了一种混合的目标检测算法,该算法结合了YOLO的快速检测能力、SSD的多尺度处理优势以及Faster R-CNN的高精度特点,旨在优化视频监控的性能.通过在合成数据集和真实世界数据集上的实验验证,该混合算法在速度和准确性上均展现出显著改进,特别是在处理小目标和高密度交通场景时的表现良好.
Research on optimization of video surveillance target detection algorithms based on YOLO,SSD,and Faster R-CNN
As the complexity of video surveillance systems increases,the need for massive real-time and accurate video sur-veillance target detection becomes crucial.Existing video target detection algorithms such as YOLO,SSD,and Faster R-CNN each have their strengths and weaknesses,and none can fully meet the diverse requirements of video detection on their own.In light of this,a hybrid target detection algorithm is proposed for video target detection,which combines the rapid detection capabilities of YOLO,the multi-scale processing advantages of SSD,and the high accuracy features of Faster R-CNN,aimed at optimizing the per-formance of video surveillance.Experimental validation on synthetic and real-world datasets has shown significant improvements in speed and accuracy with the hybrid algorithm,especially in handling small targets and dense traffic scenarios.

target detectionYOLOSSDFaster R-CNNvideo surveillancealgorithm optimization

凌英杰

展开 >

肇庆市综治事务中心,肇庆 526000

目标检测 YOLO SSD Faster R-CNN 视频监控 算法优化

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)