首页|基于压缩感知的深度学习的图像重构算法研究

基于压缩感知的深度学习的图像重构算法研究

扫码查看
压缩感知图像重构是近年来图像处理领域的研究热点之一.传统的压缩感知方法在图像重构过程中存在着计算量大、恢复质量低等问题,难以满足实际应用需求.提出了一种基于深度学习的压缩感知图像重构算法,旨在提高图像恢复的质量和效率.为压缩感知图像重构技术的发展提供了新的思路和方法,具有重要的理论和实践意义.未来,将进一步优化模型结构和训练算法,探索更加高效和精确的图像重构技术,以满足实际应用中对图像质量和效率的需求.
Research on image compressive sensing reconstruction algorithm based on deep learning
Compressed sensing image reconstruction is one of the research hotspots in the field of image processing in recent years.Traditional compressed sensing methods have problems such as large amount of calculation and low recovery quality during the image reconstruction process,which makes it difficult to meet the needs of practical applications.A compressed sensing image reconstruction algorithm based on deep learning is proposed,aiming to improve the quality and efficiency of image restoration.The results of this research provide new ideas and methods for the development of compressed sensing image reconstruction technology,which has important theoretical and practical significance.In the future,we will further optimize the model structure and training algorithm,and explore more efficient and accurate image reconstruction technology to meet the needs for image quality and effi-ciency in practical applications.

compressed sensingdeep learningreconstruction algorithm

徐传想

展开 >

广东白云学院大数据与计算机学院,广州 510000

压缩感知 深度学习 重构算法

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)