首页|基于深度强化学习的工业机器人抓取结构避障控制方法

基于深度强化学习的工业机器人抓取结构避障控制方法

扫码查看
针对传统避障控制方法在动态环境中的不足,提出一种基于深度强化学习的工业机器人抓取避障方法.通过深度强化学习构建准确的环境模型,并利用A*算法规划最优避障路径,确保路径安全性.在避障算法控制下,机器人实现稳定抓取,并实时评估性能.实验证明,该方法提高了抓取动作的完成度和避障路径的精确性,显著减少了误差,有效提升了工作效率和操作精确性.
The control method of industrial robot grasping structure based on deep reinforcement learning
Aiming at the shortcomings of traditional obstacle avoidance control methods in dynamic environments,a deep rein-forcement learning based industrial robot grasping and obstacle avoidance method is proposed.Build accurate environmental mod-els through deep reinforcement learning and use the A*algorithm to plan the optimal obstacle avoidance path to ensure path safety.Under the control of obstacle avoidance algorithms,the robot achieves stable grasping and real-time performance evaluation.Ex-perimental results have shown that this method improves the completion of grasping actions and the accuracy of obstacle avoidance paths,significantly reduces errors,and effectively enhances work efficiency and operational precision.

deep reinforcement learningindustrial robotgrasping structureobstacle avoidancecontrol

胡丞熙

展开 >

常州刘国钧高等职业技术学校智能制造学院,常州 213025

深度强化学习 工业机器人 抓取结构 避障 控制

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)