首页|基于MobileViT轻量化网络的蘑菇图像分类算法改进

基于MobileViT轻量化网络的蘑菇图像分类算法改进

扫码查看
蘑菇是一类具有分布广泛且形态多样的真菌,包括可食用的和有毒的品种,准确地对蘑菇进行分类和识别对生态环境保护具有重要意义.近年来,深度学习在图像分类领域取得了显著的成果.由于蘑菇图像数据集规模较小、存在多样性,传统的深度神经网络在蘑菇图像分类任务上可能面临着模型复杂度高、计算开销大等问题.为了解决以上问题,提出了基于改进MobileViT的轻量级网络.在网络结构中引入通道注意力机制以及将局部特征和全局特征进行融合,用1×1的卷积核替换Fusion模块中3×3的卷积核.实验结果表明,改进后的模型,能够更好地实现对蘑菇的分类,平均识别准确率达到了87.5%左右.与原始模型和其它的神经网络模型相比,准确率得到了提高.
Improvement of mushroom image classification algorithm based on lightweight MobileViT network
Mushrooms are a group of fungi with wide distribution and diverse forms,including both edible and poisonous va-rieties.Accurate classification and identification of mushrooms are of great significance for ecological conservation.In recent years,deep learning has made remarkable achievements in the field of image classification.However,due to the small size and diversity of mushroom image datasets,traditional deep neural networks may face challenges such as high model complexity and computa-tional cost in mushroom image classification tasks.To address these issues,a lightweight network based on improved MobileViT is proposed.The network structure incorporates channel attention mechanism and fuses local and global features.Additionally,the 3×3 convolutional kernel in the Fusion module is replaced with a 1×1 convolutional kernel.Experimental results demonstrate that the improved model achieves better mushroom classification performance,with an average recognition accuracy of 87.5%.Com-pared to the original model and other neural network models,the accuracy is significantly improved.

mushroomsimage classificationMobileViTchannel attention

苏申申、周卫、周淋芋、杨静

展开 >

广西民族大学电子信息学院,南宁 530006

蘑菇 图像分类 MobileViT 通道注意力

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)