首页|基于卷积神经网络和注意力机制的射频指纹识别方法

基于卷积神经网络和注意力机制的射频指纹识别方法

扫码查看
针对传统基于手工特征提取的方法存在计算复杂度高、鲁棒性差的问题,提出一种结合注意力机制与卷积神经网络(CNN)的射频指纹识别方法.该方法利用模型强大的特征提取能力,并结合注意力机制聚焦关键信息,无需人工干预,在降低复杂度的同时提高了干扰场景下的识别效率和准确率.在不同场景和信号类别的射频信号数据集中的实验结果表明,相比于未结合注意力机制的CNN,该文提出的方法对5种和10种USRP的识别准确率有着显著提升,分别达到了99.5%和98.1%,验证了其在辐射源个体识别中的有效性和优势,且无需预处理和人工设计指纹特征.
A radio frequency fingerprint recognition method based on convolutional neural networks and attention mechanism
To address the issues of high computational complexity and poor robustness in traditional methods based on hand-crafted feature extraction,this paper proposes a radio frequency fingerprint recognition method that combines an attention mecha-nism with a Convolutional Neural Network(CNN).This method leverages the powerful feature extraction capabilities of the model,while the attention mechanism focuses on key information.Without manual intervention,it reduces complexity while improving recog-nition efficiency and accuracy in interference-prone scenarios.Experimental results on radio frequency signal datasets from different scenarios and signal types show that,compared to CNN without the attention mechanism,the proposed method significantly improves recognition accuracy for 5 and 10 types of USRP,reaching 99.5%and 98.1%,respectively.This validates the method's effectiveness and advantage in individual emitter recognition,without the need for preprocessing or manually designed fingerprint features.

radio frequency fingerprint identificationconvolutional neural networkattention mechanismradiation source

李治龙、李宁静、杨志强

展开 >

四川九洲空管科技有限责任公司,绵阳 621000

射频指纹识别 卷积神经网络 注意力机制 辐射源

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)