首页|基于机器学习的学生社区网络平台事件言论分类研究

基于机器学习的学生社区网络平台事件言论分类研究

扫码查看
近年,各类网络平台大量投入高校"一站式"学生社区建设.主要探索机器学习算法在"一站式"学生社区网络平台事件言论分类中的效果.主要使用机器学习算法,包括K近邻、决策树、多项式朴素贝叶斯、逻辑回归、支持向量机、随机森林、轻量级梯度提升、极值梯度提升算法构建分类模型,对社区事件言论进行文本分类.结果显示,上述算法的准确率依次为0.62、0.74、0.89、0.88、0.85、0.87、0.80、0.82,结果表明分类具有较好效果.
Research on event classification of student community network platform based on machine learning
In recent years,various online platforms have been heavily invested in the construction of"one-stop"student com-munities in colleges and universities.This paper mainly explores the effect of machine learning algorithm in"one-stop"student community network platform event speech classification.This paper mainly uses machine learning algorithms,including K-nearest neighbor,decision tree,polynomial naive Bayes,logistic regression,support vector machine,random forest,lightweight gradient lift-ing,extreme gradient lifting algorithms to construct classification models for short text classification.The results show that the accu-racy of the above algorithm is 0.62,0.74,0.89,0.88,0.85,0.87,0.80,0.82,which shows that the classification has a good effect.

text classificationmachine learningstudent communitynetwork platform

孔令怡、杨钰、孙敏、王余万

展开 >

江苏航空职业技术学院学生工作处,镇江 212000

文本分类 机器学习 学生社区 网络平台

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)