首页|京东手机用户评论的情感分析及聚类分析

京东手机用户评论的情感分析及聚类分析

扫码查看
为了帮助商家了解消费者对商品的需求偏好以及消费者群体构成,构建了基于词典划分的情感分析和K-means聚类来识别在线评论中产品需求偏好以及客户群组模型.通过爬取京东平台华为Mate60系列手机在线评论并对其进行处理;采用LDA主题模型确定消费者关注的主题并利用HowNet词典结合自定义词典的情感分析来评分.最后基于词向量利用K-means聚类算法得到消费者细分构成,帮助商家根据不同聚类群组的特点制定明确的产品定位和特色以满足消费者的需求.
Emotion analysis and clustering analysis of Jingdong mobile phone user comments
In order to help merchants understand consumers'demand preferences for commodity and the composition of con-sumer bases,product demand preferences in online comments and customer group models are constructed based on dictionary-di-vided sentiment analysis and K-means clustering.The online comments of Huawei Mate60 series mobile phones from the Jingdong platform are crawled and then processed.The LDA topic model is used to determine consumers'topic of interest,and sentiment analysis using HowNet dictionary combined with custom dictionary is used to calculate sentiment scores.Finally,consumer segmen-tation is obtained based on word vectors and K-means clustering algorithm.This can help merchants develop clear product position-ing and characteristics according to the characteristics of different clustering groups to meet consumer demands.

online commentarysentiment analysisK-means clusteringtopic miningtext preprocessing

苏舒菲、蔺聪

展开 >

广东财经大学统计与数学学院,广州 510320

在线评论 情感分析 K-means聚类 主题挖掘 文本预处理

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)