首页|融合变异搜索的改进蚁群算法求解旅行商问题

融合变异搜索的改进蚁群算法求解旅行商问题

扫码查看
针对蚁群算法收敛速度慢、易陷入局部最优等问题,提出一种融合变异搜索的改进蚁群算法.在信息素初始化阶段,采用最近邻算子为每只蚂蚁构造初始路径,选取前10%较优路径进行信息素初始化;在迭代过程中,借鉴遗传算法的变异操作,增加变异搜索环节,选取2-opt和启发式插入两种算子对蚂蚁路径分别进行变异搜索,合并优选后再更新信息素.仿真实验选取TSPLIB实例进行验证,结果表明改进算法收敛速度和寻优能力都得到有效提升.
An improved ant colony algorithm based on fusion mutation search solves the traveling salesman problem
Aiming at the problems of slow convergence and local optimality of ant colony algorithms,an improved ant colony algorithm based on fusion mutation search was proposed.In the pheromone initialization stage,the nearest neighbor operator was used to construct the initial path for each ant,and the best 10%path was selected for pheromone initialization.In the iterative pro-cess,the mutation operation of genetic algorithm is used for reference,and the mutation search is added.Two operators,2-opt and heuristic insertion,are selected to search the mutation of ant paths respectively,and the pheromone is updated after merging and optimizing.The simulation results of TSPLIB show that the convergence speed and optimization ability of the improved algorithm are improved effectively.

ant colony algorithmTSPnearest neighbor operator2-optheuristic insertion

邓凡、谭代伦

展开 >

西华师范大学数学与信息学院,南充 637009

蚁群算法 TSP问题 最近邻算子 2-opt 启发式插入

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)