首页|基于EWord2Vec-TextCNN-SE的食品安全新闻文本分类

基于EWord2Vec-TextCNN-SE的食品安全新闻文本分类

扫码查看
随着互联网和社交媒体的发展,食品安全相关的新闻数据呈现爆炸性增长,这对于信息的筛选和分类提出了新的挑战.为了增强语义信息捕捉能力及新词处理能力,提出了一种EWord2Vec-TextCNN-SE分类模型.该模型在字级别上使用了对中文词汇进行建模的增强型Word2Vec方法,结合了分词的语义优势和字符级处理的细粒度优势进行词嵌入训练;接着,通过引入SE注意力模块,提升了全局信息关注能力,有效地提高了文本分类性能.通过与其他模型进行对比实验,结果显示EWord2Vec-TextCNN-SE模型在食品安全新闻数据集的准确率达到了91.07%,宏F1值达到了91.29%,明显优于其他模型,在解决食品安全新闻分类问题上具有优势.
Food safety news text classification based on EWord2Vec-TextCNN-SE
With the development of the Internet and social media,food safety-related news data has exploded rapidly,which poses new challenges for the screening and classification of the related information.In order to enhance the semantic information capturing ability and new word processing ability,an EWord2Vec-TextCNN-SE classification model is proposed.The proposed model uses the enhanced Word2Vec method to model Chinese vocabulary at the word level,combining the semantic advantages of word segmentation and the fine-grained advantages of character-level processing for word embedding training;then,by introducing the SE attention module.The proposed model improves the ability to focus on global information and improves text classification performance effectively.Through comparative experiments with other models,the results show that the accuracy of the EWord2Vec-TextCNN-SE model in the food safety news data set reached 91.07%,and the macro F1 value reached 91.29%,which significantly outperforms other models in solving food safety news classification and has gread advantage on this issue.

food safetynews text classificationWord2VecTextCNN

林伟鸿、贺超波、呼增

展开 >

仲恺农业工程学院信息科学与技术学院,广州 510225

华南师范大学计算机学院,广州 510631

华南理工大学广东省短距离无线探测与通信重点实验室,广州 510640

食品安全 新闻文本分类 Word2Vec TextCNN

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)