首页|以溯源图为基础的APT威胁检测方法研究

以溯源图为基础的APT威胁检测方法研究

扫码查看
如今全球网络安全面临严峻挑战,特别是高级持续性威胁(APT)的不断演变严重威胁了全球安全.针对这一问题,提出一种基于溯源图的新方法,在无需事先了解攻击模式的前提下,有效检测隐蔽且持续的基于主机的威胁.该方法利用图神经网络框架学习数据原始图中每个实体的角色,从而提高了对隐蔽威胁的敏感度,解决了定位异常节点的问题,并增强了处理复杂威胁的能力.
Research on APT threat detection methods based on traceability graphs
Nowadays,global cybersecurity is facing serious challenges,especially the evolving Advanced Persistent Threats(APTs)seriously threaten global security.To address this problem,this paper proposes a new method based on traceability graph to effectively detect covert and persistent host-based threats without prior knowledge of the attack patterns.The method utilizes a graph neural network framework to learn the role of each entity in the original graph of data,which improves the sensitivity to covert threats,solves the problem of locating anomalous nodes,and enhances the ability to handle complex threats.

cybersecurityAPT attackanomalous node localization

薛占双、马立鑫、钱文光

展开 >

北华航天工业学院计算机学院,廊坊 065000

网络安全 APT攻击 异常节点定位

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)