首页|基于大数据分析技术的景区短期客流量预测研究

基于大数据分析技术的景区短期客流量预测研究

扫码查看
景区短期客流量受多种因素影响,如天气、节假日等,导致预测难度上升,为此提出基于大数据分析技术的景区短期客流量预测方法.该方法通过多种途径采集并整合景区客流量历史数据,利用大数据分析技术从整合后的数据中高效筛选和提取与客流量预测最相关的特征.将筛选出的关键特征输入到景区短期客流量预测模型中得到相关的预测结果.实验结果表明,提出方法的客流量预测值与实际客流量值之间的差异较小,F1分数较高.
Research on short-term passenger flow prediction in scenic spots based on big data analysis technology
The short-term passenger flow of scenic spots is affected by various factors,such as weather,holidays,etc.,which in-creases the difficulty of prediction.Therefore,a method for predicting short-term passenger flow of scenic spots based on big data analysis technology is proposed.This method collects and integrates historical data of tourist flow in scenic spots through various channels,and uses big data analysis technology to efficiently screen and extract the most relevant features for predicting tourist flow from the integrated data.Input the selected key features into the short-term passenger flow prediction model of the scenic area to ob-tain relevant prediction results.The experimental results show that the difference between the predicted and actual passenger flow values of the proposed method is small,and the F1 score is high.

big data analysis technologyscenic spotshort-term passenger flowforecast

秦昌琪、苏万生、詹必魁、易晨、陈李妍

展开 >

景区交易数据要素化文化和旅游部技术创新中心,福州 350000

江苏信息职业技术学院,物联网工程学院(信息安全学院),无锡 214000

福建票付通创新科技有限公司,福州 350000

大数据分析技术 景区 短期客流量 预测

2024

现代计算机
中大控股

现代计算机

影响因子:0.292
ISSN:1007-1423
年,卷(期):2024.30(21)